Rare-Earth Ions in a Hexaognal Field I*

E. SEGAL and W. E. WALLACE
Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15213

Received December 19, 1969; Revised April 17, 1970

Abstract

Energy levels, eigenfunctions, and magnetic moments of rare-earth ions in a crystal field of hexagonal symmetry have been obtained using a Hamiltonian of the form $\mathscr{H}=\mathrm{B}_{4}{ }^{0} \mathrm{O}_{4}{ }^{0}+\mathrm{B}_{6}{ }^{0}\left(\mathrm{O}_{6}{ }^{0}+\frac{77}{8} \mathrm{O}_{6}{ }^{6}\right)$. Results have been presented for all J values appearing in the rare-earth series and have been tabulated in a form convenient for use in analyzing the influence of the crystal field on the bulk thermal and magnetic properties of compounds containing the rare earths. Since experiment shows that $\mathrm{B}_{6}{ }^{0} / \mathrm{B}_{6}{ }^{6}$ may deviate from $8 / 77$, a few calculations were made with this ratio deviating by 10 and 20% (from 8/77). These calculations showed the results to be relatively insensitive to changes in $\mathrm{B}_{6}{ }^{0} / \mathrm{B}_{6}{ }^{6}$.

I. Introduction

For many years it has been apparent (1-7) that the macroscopic thermal and magnetic properties of systems containing rare earths are significantly influenced by the interaction between the rare-earth ion and the ions in its environment. Information has become available (8$)^{1}$ for assessing these effects for crystals having cubic symmetry but not for hexagonal crystals. The objectives in this study and in this manuscript are (1) to provide for hexagonal crystals information needed to assess the influence of the crystal field interaction on their heat capacity and susceptibility behavior, and (2) to present the results of the calculation in a form convenient for use by experimentalists. For simplicity the treatment is limited to hexagonal crystals having an ideal axial ratio.

When a free rare-earth ion is placed in a crystal, its $2 J+1$ fold degeneracy is partially lifted through electrostatic interaction between its f-electrons and the charges on the surrounding ions. The multiplet is split into a number of states, which can appropriately be termed the crystal field (CF) states. The assemblage of rare-earth ions in the crystal is, of

[^0]course, distributed over the CF states, the distribution at a given temperature and the temperature variation of the population of a given state both being governed by the Boltzmann expression. The variations in population of the various CF states which occur as a result of a change in temperature significantly affects a number of macroscopic properties of rare earth systems--their conductivities, thermal properties, and bulk magnetic characteristics. For example, if, as temperature is reduced, ions settle into states of low or vanishing moment, electrical conductivity substantially improves due to the suppression of spin-disorder scattering effects.

The influence of the crystal field on the temperature dependence of susceptibility (χ) was discussed by Penney and Schlapp (2) many years ago. χ may be computed from the fundamental Van Vleck equation
$\chi=\left(N_{0} / H\right) \sum_{i} \mu_{i} \exp \left(-E_{i} / k T\right) / \sum_{i} \exp \left(-E_{i} / k T\right)$,
where $N_{0}=$ the Avogadro number, H represents field strength, and μ_{i} and E_{i} refer to the magnetic moment and energy, respectively, of the i-th crystal field level. Penney and Schlapp pointed out that for temperatures such that $k T>E_{i}$, Eq. (1) leads to a reciprocal susceptibility which is linearly dependent on T (Curie-Weiss behavior), whereas at lower temperatures such that this condition is no longer fulfilled significant deviations from linear behavior can occur. The effect of shifting populations in the various CF states is evident not only in the χ vs T
behavior of rare-earth systems but also in their heat capacities. At very low temperatures ions occupy the lowest CF state(s). With increasing temperature excitation within the CF spectrum oecurs, producing a significant contribution to the total heat capacity. This contribution $\left(C_{C}\right)$ is given by the expression

$$
\begin{gather*}
C_{C}=R T^{2} d^{2} \ln Q / d T^{2} \tag{2}\\
\text { where } Q=\sum_{i} \exp \left(-E_{k} / k T\right)
\end{gather*}
$$

Numerous studies of the susceptibility and heat capacity behavior of metallic rare-earth systems have been made in the last decade (1-5). Many of these have clearly revealed the crystal field effects just alluded to, the qualitative features being evident from the most superficial scrutiny. However, to evaluate the results quantitatively it is necessary to know E_{i} and μ_{i} and also the eigenfunctions (ψ_{i}) for the crystal field states. These quantities can be determined by straightforward calculational methods which are described very briefly in the next section. Thus, in principle it is possible to make $a b$ initio calculations of C_{c} and χ; in practice they can be computed with useful precision only in parametrical form (with 1,2 , or 3 disposable parameters involved) because the quantities $\left\langle r^{n}\right\rangle$ with $n=2,4$, and 6 enter into the calculations and these expectation values for the f electrons are not known with sufficient precision to warrant direct calculation of macroscopic properties. One must instead be satisfield to show ($6,7,9,10$) that with reasonable values of the parameters a proper accounting can be made for the temperature dependence of C_{C} and/or χ. Any "comparison" between theory and experiment then reduces to a process of evaluating the disposable parameters, from which can be obtained such important information as the overall splitting $\left(E_{c}\right)$ and other details of the CF spectrum, the relative importance of different order terms in the perturbing potential, etc.--information which is of very considerable significance.

As a result of work extending over the preceding three decades adequate information is available $(2,8,11,12)$, to permit the analysis alluded to in the previous paragraph to be made for crystals of cubic symmetry. There is no correspondingly comprehensive treatment for crystalline systems of hexagonal symmetry, although a number of special cases have been solved (5, 6, 13-15 ${ }^{1}$). Most of the early work pertained to chlorides and the triethyl sulfates in which the second order interaction is

[^1]important. More recent work from this laboratory has been concerned with metallic systems involving Pr -elemental Pr and PrAl_{3}. These analyses have represented steps toward providing the much needed general information for hexagonal systems. The present work is an extension to include all other J values, but, as will be noted below, is restricted to crystals whose axial ratios are ideal. The treatment will be extended later to include the effect of an applied magnetic field (II in the series) and the influence of deviation from the ideal axial ratio so that the second-order term becomes important (III in the series).

In Section II very brief descriptions are given of the Hamiltonian employed and the mode of calculation. Results are presented in Section III together with some comments about possible errors which arise out of the approximate nature of the Hamiltonian.

II. General Description of the Calculations

A. The Hamiltonian

The most general Hamiltonian for a hexagonal crystal field contains four independent parameters. Following the notation described by Hutchings (16) it can be written

$$
\begin{equation*}
\mathscr{H}=\mathrm{B}_{2}{ }^{0} \mathrm{O}_{2}{ }^{0}+\mathrm{B}_{4}{ }^{0} \mathrm{O}_{4}{ }^{0}+\mathrm{B}_{6}{ }^{0} \mathrm{O}_{6}{ }^{0}+\mathrm{B}_{6}{ }^{6} \mathrm{O}_{6}{ }^{6} . \tag{3}
\end{equation*}
$$

To date very few calculations have been made using this complete and complex Hamiltonian. If consideration is limited to crystals with the ideal axial ratio (i.e., $c / a=2 \sqrt{2 / 3}=1.63$), the second-order term vanishes. The Hamiltonian can be further simplified by making use of the result $\mathrm{B}_{6}{ }^{0} / \mathrm{B}_{6}{ }^{6}=\frac{8}{77}=$ 0.1035 obtained if the point charge model applies.

$$
\begin{equation*}
\mathscr{H}=\mathrm{B}_{4}{ }^{0} \mathrm{O}_{4}{ }^{0}+\mathrm{B}_{6}{ }^{0}\left(\mathrm{O}_{6}{ }^{0}+\frac{77}{\mathrm{~B}} \mathrm{O}_{6}{ }^{6}\right) . \tag{4}
\end{equation*}
$$

Calculations were made using this simplified Hamiltonian. Clearly these calculations can be regarded as significant only if the simplified Hamiltonian can be justified. It is appropriate to examine this point in some detail.

First, consider the axial ratio limitation. Are there materials of interest with ideal or nearly ideal (viz., \mathbf{B}_{2} very small) axial ratios? The answer to this question is yes. Elemental $\operatorname{Pr}(c / a=1.61)$ is an example; it was recently analyzed $(5,10)$ on the basis of $\mathrm{B}_{2}=0$ and excellent agreement with experiment was achieved. Other hexagonal elements and intercompounds with axial ratios which are ideal or nearly so: $\mathrm{Ce}, 1.62 ; \mathrm{Nd}, 1.612 ; \mathrm{ErMn}_{2}, 1.63$;
$\mathrm{TmMn}_{2}, 1.63 ; \mathrm{DyOs}_{2}, 1.61 ; \mathrm{ErOs}_{2}, 1.65$, etc. There are thus sufficient crystals known to warrant undertaking calculations with c / a restricted to the ideal values.

Next, consider the use of the assumed ratio for $\mathrm{B}_{6}{ }^{0} / \mathrm{B}_{6}{ }^{6}$. Calculations (17) show that this ratio is relatively insensitive to the positions of the surrounding ions so that small deviations in c / a from 1.63 are insignificant. This ratio is also insensitive to the model used in the calculations. The point charge model values are not too different from the values computed from the more general ionic model (17) which takes into account in addition to the point charges higher induced moments of the surrounding ions. Experiment reveals that this ratio is also relatively insensitive to the particular rare-earth ion and/or the nature of the substance involved. For example, assuming $\mathrm{B}_{6}{ }^{0} / \mathrm{B}_{6}{ }^{6}=0.1035$ led $(6,10)$ to a proper analysis of the magnetic and thermal properties of Pr and PrAl_{3}. In addition analysis of results for nine rare-earth trichlorides, whose structures differ markedly from those of Pr and PrAl_{3}, leads (18) to a ratio 0.100 and which is moreover constant to 3% over the entire group of rareearth halides. Thus there is experimental support for the assumed relationship between $\mathrm{B}_{6}{ }^{0}$ and $\mathrm{B}_{6}{ }^{6}$. Nevertheless the possibility exists that $\mathrm{B}_{6}{ }^{0} / \mathbf{B}_{6}{ }^{6}$ may deviate from 0.1035 by 10% or more. To ascertain the effect of such variations some of the calculations were repeated with the ratio differing from 0.1035 by 10 or 20%. The influence of this variation, which was minor, will be discussed more fully in the following section.

B. The Energies, Eigenfunctions, and Magnetic Moments

If the crystal field interaction $\left(E_{c}\right)$ is weak compared to the spin-orbit coupling energy, eigenfunctions for the crystal field states Γ_{i} can be expressed as linear combinations of eigenfunctions for the free ion associated with various M values, $|M\rangle=|L S J M\rangle:$

$$
\begin{equation*}
\left|\Gamma_{i}\right\rangle=\sum_{M=-J}^{J} a_{i M}|M\rangle \tag{5}
\end{equation*}
$$

Given the Hamiltonian, the Operator Equivalent method developed by Stevens (19) can be employed in a straightforward way to establish the eigenvalues and eigenfunctions [i.e., to evaluate numerically the a_{i} 's in Eq. (5)]. A thorough discussion of the Operator Equivalent method has been given by Hutchings (16). Further information regarding details of the technique involved in making the present calculations may be found elsewhere (20).

TABLE 1
Nomenclature Used in Eigenfunction Designation

Terms Appearing in Eigenfunction (See Eq. 5 in Text)	Dominant Term $J=2 n$	Designation
$\|0\rangle,\|6\rangle,\|-6\rangle$	0)	o
$\| \pm 1\rangle,\| \pm 5\rangle,\| \pm 7\rangle$	$\| \pm 1\rangle$	a
$\| \pm 2\rangle,\| \pm 4\rangle, \mid \pm 8$	± 2	b
$\|+3\rangle,-3\rangle$	(3 3)	c
$\| \pm 2\rangle,\| \pm 4\rangle, \mid \pm 8$	± 4)	d
$\| \pm 1\rangle,\| \pm 5\rangle,\| \pm 7\rangle$	± 5)	e
$\|0\rangle,\|+6\rangle,\|-6\rangle$	-6)	f
$\| \pm 1\rangle,\| \pm 5\rangle,\| \pm 7\rangle$	$\pm 7\rangle$	g
$\| \pm 2\rangle,\| \pm 4\rangle, \mid \pm 8$	± 8 >	h
	$J-2 n+1$	
$\| \pm 1 / 2\rangle,\| \pm 11 / 2\rangle,\| \pm 13 / 2\rangle$	\| $\pm 1 / 2$ \%	a
$\| \pm 3 / 2\rangle,\| \pm 9 / 2\rangle,\| \pm 15 / 2\rangle$	$\pm 3 / 2$ \%	b
$\| \pm 5 / 2\rangle,\| \pm 7 / 2\rangle$	$\pm 5 / 2$	c
$\| \pm 5 / 2\rangle,\| \pm 7 / 2\rangle$	$\pm 7 / 2$)	d
$\| \pm 3 / 2\rangle,\| \pm 9 / 2\rangle,\| \pm 15 / 2\rangle$	$\pm 9 / 2$;	e
$\| \pm 1 / 2\rangle,\| \pm 11 / 2\rangle,\| \pm 13 / 2\rangle$	$\pm 11 / 2$ >	f
$\| \pm 1 / 2\rangle,\| \pm 11 / 2\rangle,\| \pm 13 / 2\rangle$	$\pm \pm 13 / 2\rangle$	g
$\| \pm 3 / 2\rangle,\| \pm 9 / 2\rangle,\| \pm 15 / 2\rangle$	$1 \pm 15 / 2$ >	h

To facilitate discussion and presentation of data the nomenclature presented in Table 1 is adopted.

C. Magnetic Moments of the Crystal Field States

To facilitate the calculation of magnetic properties, the magnetic moment has been computed for each of the crystal field states. Moments parallel and perpendicular to the hexagonal axis are denoted μ_{1} and μ_{\perp}, respectively. The magnetic moment μ is given by the fundamental expression

$$
\begin{equation*}
\mu=\left\langle I_{i}\right|(\mu)_{o p}\left|\Gamma_{i}\right\rangle \tag{6}
\end{equation*}
$$

where $\mu_{o p}=g J$. From (6) one obtains for μ_{i} the expression

$$
\begin{equation*}
\mu_{\|}=\frac{1}{J} \sum_{M-J}^{J} M a_{M}^{2} \tag{7}
\end{equation*}
$$

μ_{\perp} vanishes unless J is nonintegral and I_{i}^{\prime} contains terms corresponding to $\Delta M= \pm 1$. Under these circumstances μ_{\perp} may exceed $\mu_{\|}$. In general

$$
\begin{equation*}
\mu_{\perp}=\frac{1}{J}\left\langle\Gamma_{i}\right| J_{x}\left|\Gamma_{i}\right\rangle \tag{8}
\end{equation*}
$$

and the contributions to μ_{\perp} come from the cross terms in Γ_{t} corresponding to $\Delta M= \pm 1$. The matrix elements involved in Eq. (8) are given by the expressions

$$
\begin{equation*}
\langle M| J_{x}|M+1\rangle=1 / 2 \sqrt{(J-M)(J+M+1)} \tag{9a}
\end{equation*}
$$

and

$$
\langle M| J_{x}|M-1\rangle=1 / 2 \sqrt{(J+M)(J-M+1) .} \text {. } 9 \mathrm{~b} \text {) }
$$

For the special case that $\Gamma_{i}=| \pm 1 / 2\rangle$

$$
\begin{equation*}
\mu_{\perp}=\frac{1}{2 J}(J+1 / 2) . \tag{10}
\end{equation*}
$$

Also for the levels a, f, and g for $J=15 / 2$, which involve the cross terms $M= \pm 11 / 2$ and $\pm 13 / 2$,

$$
\begin{equation*}
\mu_{\perp}=4 / 15\left(2 a_{1 / 2}^{2}+\sqrt{7} a_{11 / 2} a_{13 / 2}\right) \tag{11}
\end{equation*}
$$

and

$$
\begin{equation*}
\mu=\sqrt{\mu_{\|}{ }^{2}+\mu_{\perp}{ }^{2}} . \tag{12}
\end{equation*}
$$

TABLE 2
Energies, Eigenfunctions, and Magnetic Moments

Table 2-continued

Table 2-continued

Table 2-continued

$\begin{aligned} & J=\frac{9}{2}-\Gamma_{7}(\text { doublet })+2 \Gamma_{8}(\text { doublet })+2 \Gamma_{9}(\text { doublet }) \\ & \left(\mathrm{Nd}^{3+}\right) \end{aligned}$										
$\left\|\Gamma_{7}\right\rangle=\|0\rangle=\| \pm 1 / 2\rangle$										
$\mu_{H}=0.111 \quad \mu_{\perp}=0.5 \% \quad \mu=0$.										
x E										
71 725.2 I 1a lymenr with										
0										
$\left\|\Gamma_{9}\right\rangle \equiv\|b\rangle=a_{\frac{3}{2}}\left\|\mp \frac{3}{2}\right\rangle+a_{\frac{9}{2}}\left\| \pm \frac{9}{2}\right\rangle, a_{\frac{3}{2}}^{2}>a_{\frac{9}{2}}^{2}$										
	x		μ	$\frac{3}{2}$						
	2.0	74.2	0.333	1.000	0.000			.000	725.2	
	0.8	-0.6	0.309	0.990	0.13			. 975	-19.3	
	0.6	3.8	0.280	0.956	0.29			. 897	-14.3	
	0.4	9.2	0.001	0.900	0.43			. 748	-10.1	
	-0.2	15.3	0.062	0.839	0.51			. 605	- 6.8	
	0.0	22.0	0.179	0.785	0.62			. 488	- 4.0	
	0.2	20.2	0. 314	0.717	0.6			. 353	0.1	
	0.4	3.4	0.132	0.807	-0. 59			. 535	19.2	
	0.6	5.3	0.141	0.925	-0. 38			. 808	19.6	
	0.8	5.4	0.310	0.968	-0:19			. 988	24.8	
	*			$\frac{2}{2}$	${ }^{4} \frac{3}{2}$		${ }^{\mu}$		1	
$\left\|\Gamma_{9}\right\rangle \equiv\|e\rangle=a_{\frac{9}{2}}\left\|\mp \frac{9}{2}\right\rangle-a_{\frac{3}{2}}\left\| \pm \frac{3}{2}\right\rangle \cdot a_{\frac{9}{2}}^{2}>a_{\frac{3}{2}}^{2}$										
$\left.\left\|\Gamma_{0}\right\rangle=\|C\rangle=a_{\frac{5}{2}}\left\|\mp \frac{5}{2}\right\rangle+a_{\frac{7}{2}}\left\| \pm \frac{7}{2}\right\rangle, a_{\frac{5}{2}}^{2}\right\rangle a_{\frac{7}{2}}^{2}$										
					μ_{\perp}	$\begin{gathered} 5 \\ 5 \\ 5 \end{gathered}$				
$\dagger 1.0$	423.8			. 556	0	1.000	0,000	0.778	0.778	± 30.8
-0.8	23.7			. 17	0.418	0.819	0.575	0.339	0.538	17.5
-0.6	23.9			. 311	0.344	0.904	0.428	0.533	0.633	6.0
-0.4	26.4			. 353	0.319	0.901	0.390	0.575	0.658	-5.8
-0.2	26.9			. 372	0.307	0.920	0.372	0.593	0.660	-27.6
0.0	27.5			380	0.300	0.932	0.363	0.603	0.673	-29.5
0.2	17.1		08	. 389	0.294	0.936	0.353	0.612	0.678	-29.6
0.4	6.6	0.		403	0.283	0.941	0.338	0.625	0.686	-29.7
0.6	- 3.8			0.427	0.263	0.950	0.311	0.649	0.700	-29.8
0.8	-14.1			. 473	0.224	0.969	0.249	0.695	0.726	-30.0
*					${ }^{+1}$	$\frac{7}{2}$	$\frac{5}{2}$		${ }^{\mu}$	E
$\left.\left\|r_{8}\right\rangle=\|d\rangle=a_{\frac{7}{2}}\left\|\mp \frac{7}{2}\right\rangle-a_{\frac{5}{2}}\left\| \pm \frac{5}{2}\right\rangle, o_{\frac{7}{2}}^{2}\right\rangle o_{\frac{3}{2}}^{2}$										

Table 2－continued

$$
\begin{aligned}
& \left|r_{9}\right\rangle \equiv|6\rangle=| \pm 3 / 2\rangle \\
& \text { Ef0: } \begin{array}{ll}
\pm+\frac{1}{2} & - \pm \frac{3}{2} \\
- \pm \frac{3}{2} & \text { 二年 } \\
+\frac{5}{2}
\end{array}
\end{aligned}
$$

Explanation of Symbols in Table
x is a parameter giving the relative importance of the fourth－and sixth－order terms．E is the energy in units of the parameter W ．（For definitions of x and W see Eq．13．）a_{M} are the normalized coefficients in the eigenfunction $\left|\Gamma_{i}\right\rangle=\sum_{m--J}^{J} a_{i M}|M\rangle \cdot \mu_{\|}$and μ_{\perp} are magnetic moments（divided by $g J \mu_{\mathrm{B}}$ ）along directions parallel and perpendicular to the c axis，respectively．$\mu=\sqrt{\mu_{\|}{ }^{2}+\mu_{\perp}{ }^{2}}$ ．

The table has been constructed for the group $D_{6}(=622)$ ．Concerning the number of terms and their degeneracies this table is also valid for other hexagonal point groups（23）．

The moments given in Eqs．（7），（8），（10），（11），and （12）and in Table 2 are reduced moments．To obtain the moment in Bohr magnetons per ion the reduced moment is multiplied by $g J$ ．

D．Other Details

For calculations the Hamiltonian was used in the form

$$
\begin{gather*}
\mathscr{H}=W\left[x \frac{\mathrm{O}_{4}}{\mathrm{~F}_{4}}+(1-|x|) \frac{\mathrm{O}_{6}}{\mathrm{~F}_{6}}\right] . \tag{13}\\
\mathrm{O}_{4}=\mathrm{O}_{4}{ }^{0}, \mathrm{O}_{6}=\mathrm{O}_{6}{ }^{0}+\frac{77}{8} \mathrm{O}_{6}{ }^{6}, \mathrm{~F}_{4}=60 \text { and } \mathrm{F}_{6}-1260
\end{gather*}
$$

for $J=7 / 2$ and 4,2520 for $J=9 / 2,7560$ for $J=6$ and 13860 for $J=15 / 2$ and 8 ．The parameter $|x| \leqslant 1$ gives the relative importance of the fourth and sixth degree．

$$
\begin{equation*}
\mathrm{B}_{4} \mathrm{~F}_{4}=W x, \quad \mathrm{~B}_{6} \mathrm{~F}_{6}=W(1-|x|) . \tag{14}
\end{equation*}
$$

The point charge model coefficients B_{4} and B_{6} are the sums
$\mathrm{B}_{4}=\frac{-e^{2}}{64} \beta\left\langle r^{4}\right\rangle \sum_{j} \frac{Z_{j}}{R_{j}^{5}}\left(35 \cos ^{4} \theta_{j}-30 \cos ^{2} \theta_{j}+3\right)$

Fig. 1. Energy levels and eigenfunctions of an ion, with a total angular momentum. $J=8$, as a function of the mixing parameter x.
-The eigenfunctions of the level do not depend on x.
--.- The eigenfunctions a re over 80% of the eigenfunctions indicated at $x= \pm 1$.
--- The eigenfunctions are less than 80% of the eigenfunctions as indicated.
The energy scale is in units of W. When $W>0$ the order of the levels is as shown. If $W<0$, the order of the levels is inverted.
and

$$
\begin{align*}
\mathrm{B}_{6}= & \frac{-e^{2}}{256}\left\langle r^{6}\right\rangle \sum_{j} \frac{Z_{j}}{R_{j}{ }^{7}} \\
& \times\left(231 \cos ^{6} \theta_{j}-315 \cos ^{4} \theta_{j}+105 \cos ^{2} \theta_{j}-5\right) . \tag{16}
\end{align*}
$$

In these equations the origin is the center of the magnetic ion. R_{j} is the distance of the j th ion from the magnetic ion, and θ_{j} is measured from the z axis, taken in this case to be the hexagonal axis. β and γ are the Stevens (8,18) multiplicative factors. $e^{2}=$ $1.67097(4)^{\circ} \mathrm{K} \AA$.

If the summation is carried out only over the twelve nearest and the six next nearest neighboring ions, one obtains for the $A 3$ structure (simple $c p h$) with idcal axial ratio (10):

$$
\begin{equation*}
\mathrm{B}_{4}=-0.51560 \beta\left\langle r^{4}\right\rangle \frac{Z e^{2}}{a^{5}} \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{B}_{6}=0.263467 \gamma\left\langle r^{6}\right\rangle \frac{\mathrm{Ze}^{2}}{a^{7}} \tag{18}
\end{equation*}
$$

assuming all ions have the same charge Z. The lattice constant is denoted by a.

The matrix of Eq. (5) was established using the matrix elements of the equivalent operators tabulated by Hutchings (16). Diagonalization was effected by methods which have been described in detail elsewhere $(5,6,20)$.

III. Results and Discussion

Results are summarized in Table 2 and in Figs. $1-15$. In the diagrams of the energy levels the nature of the eigenfunctions is indicated. For $x= \pm 1$ the eigenfunctions are written beside the level. When the eigenfunctions of the level do not depend on x, a solid line follows the level. When the eigenfunctions change as a function of x, the line is broken. If the eigenfunctions are 80% or more of that which is indicated for $x= \pm 1$ the dashes are short and dense. When the eigenfunctions are less than 80% the dashes are long.

In Figs. 1-15, it is noted that the levels for $x=1$ are the inverse of those for $x=-1$. Thus a level with $x=-1$ with certain eigenfunctions must reach at $x=1$ a level with identical eigenfunctions. For example, in the diagram for $J=\frac{15}{2}$ the level lettered " a " whose eigenfunctions for $x=-1$ are $\mid \pm 1 / 2$) must reach the level whose eigenfunctions are $| \pm 1 / 2\rangle$ at $x=1$. In following the levels one keeps to the level which contains more than 50% of the original eigenfunctions. To keep this principle it is necessary to jump from one representation to another which has the same symmetry properties. In the example for $J=15 / 2$ the level " a " jumps at $x=-0.03$ from $E=-141 W$ to $E=-84 W$ and continues as the level lettered " g " (originally $\left| \pm \frac{13}{2}\right\rangle$). At $x=0.06$ the level " a " jumps once more, from $E=-88 W$ to $E=2 W$, and continues as the level lettered " f " (originally $\left| \pm \frac{11}{2}\right\rangle$). In some cases, when a particular representation occurs three times (only for $J=\frac{15}{2}$ and 8) in the neighborhood of a "jumping point" the three components of the eigenfunctions are less than 50% for each component. In such a case we follow the largest component.

Fig. 2. Permanent (parallel) magnetic moments of the levels in Fig. 1. The two eigenfunctions of the doublet leveis have equal and opposite magnetic moments; in the figure only the positive component is shown. (Notice the nonlinear scale of x.)
(Dy, Er) $J=15 / 2$ Hexagonal

Fig. 3. Data corresponding to that in Fig. 1 for ion with $J=15 / 2$.

Fig. 4. Total permanent magnetic moment (μ) of the levels of Fig. 3.

Fig. 5. Permanent parallel ($\mu_{\|}$) and perpendicular (μ_{\perp}) magnetic moments of the levels of Fig. 3. The two eigenfunctions of a doublet level have one perpendicular component and two parallel components. The two parallel components have equal and opposite magnetic moments. In the figure only the positive component of the parallel moments is shown. The levels c and d have equal and opposite perpendicular magnetic moments. In the figure only the positive part is shown.

Fig. 6. Data corresponding to that in Fig. 1 for ion with $J=6$.

Consider the eigenfunctions of the level " a " at $x=0$ which is close to two "jumping points." In this case between the two "jumping points" the eigenfunctions are $|a\rangle=0.653\left| \pm \frac{13}{2}\right\rangle-0.509| \pm 1 / 2\rangle$ $-0.560\left| \pm \frac{11}{2}\right\rangle$. This level is lettered " a ", which originally was $| \pm 1 / 2\rangle$ because the other two levels (g, f) of the same symetry $\left(\Gamma_{7}\right)$ are well defined at $x=0$, which means that these levels (f, g) at $x=0$ have more than 50% the $\left| \pm \frac{11}{2}\right\rangle$ and $\left| \pm \frac{13}{2}\right\rangle$ components respectively. $|f\rangle=0.769 \quad \left\lvert\, \pm \frac{11}{2}+0.612\right.$ $\left| \pm \frac{1}{2}\right\rangle+0.182\left| \pm \frac{13}{2}\right\rangle .|g\rangle=0.735\left| \pm \frac{13}{2}\right\rangle-0.604$ $\left| \pm \frac{1}{2}\right\rangle+0.307\left| \pm \frac{11}{2}\right\rangle$.
This procedure is somewhat complicated but it provides useful information about the eigenfunctions of the level merely by looking at the diagrams.

Only for precise knowledge or calculations must one go to the tables.

As noted earlier, the calculations are based on the assumption that $B_{6}{ }^{0} / B_{6}{ }^{6}=8 / 77$, a ratio which is found experimentally within 10 to 20% for a large number of rare-earth compounds. Some calculations were made with this ratio varying by 10 and 20%. The differences (Figs. 16-19) produced are minor; the order of levels is unchanged and their spacings are only trivially affected. Hence the effect in using the approximate Hamiltonian, instead of the exact one involving the $\mathrm{B}_{6}{ }^{0}, \mathrm{~B}_{6}{ }^{6}$ ratio appropriate to the particular compound under investigation, will be to obtain slightly different values for the parameters W and x when the theoretical results obtained in

Fig. 7. Data corresponding to that of Fig. 2 for ion with $J=6$.

Fig. 8. Data corresponding to that in Fig. 1 for ion with $J=9 / 2$.

Fig. 9. Data corresponding to that in Fig. 4 for ion with $J=9 / 2$.

Fig. 10. Data corresponding to that in Fig. 5 for ion with $J=9 / 2$.
parametrical form are compared with experiment. The W and x parameters will have less intrinsic significance than would be the case if the exact Hamiltonian were employed. Notwithstanding this limitation the present results would seem to be of
very considerable utility in respect to the evaluation of the influence of the crystal field interaction on the bulk magnetic and thermal properties of crystals containing rare-earth ions. Examples of these uses are to be found in recent publications from this

Fig. 11. Data corresponding to that in Fig. 1 for ion with $J=4$.

Fig. 12. Data corresponding to that in Fig. 2 for ion with $J=4$.

Fig. 13. Data corresponding to that in Fig. 1 for ion with $J=7 / 2$.

FIG. 14. Data corresponding to that in Fig. 4 for ion with $J=7 / 2$.

Fig. 15. Data corresponding to that in Fig. 5 for ion with $J=7 / 2$.

Fig. 16. Data corresponding to that in Fig. 8, for different $B_{6}{ }^{0} / B_{6}{ }^{6}$ values.

SEGAL AND WALLACE

Fig. 17. Data corresponding to that in Fig. 9, for different $\mathrm{B}_{6}{ }^{0} / \mathrm{B}_{6}{ }^{0}$ values.

Fig. 18. Data corresponding to that in Fig. 11 for different $\mathrm{B}_{6}{ }^{0} / \mathbf{B}_{6}{ }^{0}$ values.

Fig. 19. Data corresponding to that in Fig. 12 for different $\mathrm{B}_{6}{ }^{0} / \mathbf{B}_{6}{ }^{0}$ values.

Laboratory dealing with the susceptibilities and heat capacity behavior of intermetallic compounds containing rare-earth elements (4-6, 9, 21, 22).

References

I. D. H. Parkinson, F. E. Simon, and F. H. Spedding, Proc. Roy. Soc. Ser. A 207, 137 (1951).
2. W. G. Penney and R. Schlapp, Phys. Rev. 41, 194 (1932).
3. R. M. Bozorth, B. T. Matthias, H. Suhl, E. Corenzwit, and D. D. Davis, Phys. Rev. 115, 1595 (1959).
4. W. E. Wallace, "Progress in Rare Earth Science and Technology," (L. Eyring, Ed.), Vol. 3, p. 1, Pergamon Press, New York, 1958.
5. W. E. Wallace, F. Kissell, E. Segal, and R. S. Craig, J. Phys. Chem. Solids 30, 13 (1969).
6. K. H. Mader, E. Segal, and W. E. Wallace, J. Phys. Chem. Solids 30, 1 (1969).
7. J. A. White et al., Phys. Rev. 131, 1039 (1963).
8. K. R. Lea, M. J. M. Leask, and W. P. Wolf, J. Phys. Chem. Solids 23, 1381 (1962).
9. T. Tsuchida and W. E. Wallace, J. Chem. Phys. 43, 2087, 2885 (1965).
10. B. Bleaney, Proc. Roy. Soc. Ser. A 276, 39 (1963).
11. D. P. Schumacher and C. A. Hollingsworth, J. Phys. Chem. Solids 27, 749 (1966).
12. Y. Ebina and N. Tsuya, Sci. Rep. Res. Inst. Tohoku Univ. Ser. Suppl. B 15, 1, 47 (1963).
13. R. J. Elliott and K. W. H. Stevens, Proc. Roy. Soc. Ser. A 219, 387 (1953).
14. C. A. Hutchison, Jr. and E. Wong, J. Chem. Phys. 29, 754 (1958).
15. G. H. Dieke, "Spectra and Energy Leveis of Rare Earth Ions in Crystals," Interscience Publishers, New York, 1968.
16. M. T. Hutchings, Solid State Phys. 16, 277 (1966).
17. M. T. Hutchings and D. K. Ray, Proc. Phys. Soc. London 81, 663 (1963).
18. Ref. (15), p. 148.
19. K. W. H. Stevens, Proc. Roy. Soc. Ser. A 65, 209 (1952).
20. E. Segal, in "Thermal, Structural and Magnetic Studies of Metals and Intermetallic Compounds" (W. E. Wallace and R. S. Craig, Eds.), Annual Report to the U.S. Atomic Energy Commission, NYO-3454-27, May 15, 1969.
21. W. E. Wallace et al., CNRS Colloquium on Rare Earths, No. 180, Vol. II, 427 (1970).
22. W. E. Wallace, R. S. Craig, and C. Deenadas, to appear.
23. H. Bethe, Ann. Phys. 3, 133 (1929); English transl., Plenum Publishing Corp., New York.

[^0]: * This work was assisted by the U.S. Atomic Energy Commission and the Army Research Office, Durham, North Carolina.
 ${ }^{1}$ Our parameters x and W are not identical to that of this reference. Here the $\mathrm{B}_{n}{ }^{m}$ or x and W are expressed in a coordinate system in which the z axis is along the cubic [100] direction. In the present paper z is along the hexagonal c axis corresponding to the cubic [111] direction.

[^1]: ${ }^{1}$ This monograph gives very extensive references to the pertinent literature (pp. 352-385).

