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Energy levels, eigenfunctions, and magnetic moments of rare-earth ions in a crystal field of hexagonal symmetry 
have been obtained using a Hamiltonian of the form X = BdOOdO + B6’(OG0 + zaz066). Results have been 
presented for all Jvalues appearing in the rare-earth series and have been tabulated in a form convenient for use 
in analyzing the influence of the crystal field on the bulk thermal and magnetic properties of compounds containing 
the rare earths. Since experiment shows that B6’/B6’ may deviate from 8/77, a few calculations were made with 
this ratio deviating by 10 and 20% (from 8/77). These calculations showed the results to be relatively insensitive 
to changes in B,0/B6”. 

I. Introduction 

For many years it has been apparent (Z-7) that the 
macroscopic thermal and magnetic properties of 
systems containing rare earths are significantly 
influenced by the interaction between the rare-earth 
ion and the ions in its environment. Information has 
become available (8)’ for assessing these effects for 
crystals having cubic symmetry but not for hexag- 
onal crystals. The objectives in this study and in this 
manuscript are (1) to provide for hexagonal 
crystals information needed to assess the influence of 
the crystal field interaction on their heat capacity 
and susceptibility behavior, and (2) to present the 
results of the calculation in a form convenient for 
use by experimentalists. For simplicity the treatment 
is limited to hexagonal crystals having an ideal 
axial ratio. 

When a free rare-earth ion is placed in a crystal, 
its 25 + 1 fold degeneracy is partially lifted through 
electrostatic interaction between its f-electrons and 
the charges on the surrounding ions. The multiplet 
is split into a number of states, which can appropri- 
ately be termed the crystal field (CF) states. The 
assemblage of rare-earth ions in the crystal is, of 

* This work was assisted by the U.S. Atomic Energy 
Commission and the Army Research Office, Durham, 
North Carolina. 

I Our parameters x and Ware not identical to that of this 
reference. Here the B.” or x and W are expressed in a co- 
ordinate system in which the z axis is along the cubic [lOO] 
direction. In the present paper z is along the hexagonal c axis 
corresponding to the cubic [ill] direction. 

course, distributed over the CF states, the distribu- 
tion at a given temperature and the temperature 
variation of the population of a given state both 
being governed by the Boltzmann expression. The 
variations in population of the various CF states 
which occur as a result of a change in temperature 
significantly affects a number of macroscopic 
properties of rare earth systems-their conductivi- 
ties, thermal properties, and bulk magnetic charac- 
teristics. For example, if, as temperature is reduced, 
ions settle into states of low or vanishing moment, 
electrical conductivity substantially improves due 
to the suppression of spin-disorder scattering 
effects. 

The influence of the crystal field on the tempera- 
ture dependence of susceptibility (x) was discussed 
by Penney and Schlapp (2) many years ago. x may 
be computed from the fundamental Van Vleck 
equation 

x = (No/H) T pi exp (-E,iW/~ exp (-WW, (1) 

where NO = the Avogadro number, H represents 
field strength, and pLr and Ei refer to the magnetic 
moment and energy, respectively, of the i-th crystal 
field level. Penney and Schlapp pointed out that for 
temperatures such that kT=- E,, Eq. (1) leads to a 
reciprocal susceptibility which is linearly dependent 
on T (Curie-Weiss behavior), whereas at lower 
temperatures such that this condition is no longer 
fulfilled significant deviations from linear behavior 
can occur. The effect of shifting populations in the 
various CF states is evident not only in the x vs T 
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behavior of rare-earth systems but also in their heat 
capacities. At very low temperatures ions occupy 
the lowest CF state(s). With increasing temperature 
excitation within the CF spectrum occurs, producing 
a significant contribution to the total heat capacity. 
This contribution (C,) is given by the expression 

Cc = RT2 d2 In QjdT’ 
where Q = 7 exp (-E,/kT). 

(2) 

Numerous studies of the susceptibility and heat 
capacity behavior of metallic rare-earth systems 
have been made in the last decade (1-5). Many of 
these have clearly revealed the crystal field effects 
just alluded to, the qualitative features being evident 
from the most superficial scrutiny. However, to 
evaluate the results quantitatively it is necessary to 
know El and pr and also the eigenfunctions (#J for 
the crystal field states. These quantities can be 
determined by straightforward calculational 
methods which are described very briefly in the next 
section. Thus, in principle it is possible to make 
ab initio calculations of Cc and x; in practice they 
can be computed with useful precision only in 
parametrical form (with 1, 2, or 3 disposable 
parameters involved) because the quantities (Y”) 
with n = 2, 4, and 6 enter into the calculations and 
these expectation values for the f electrons are not 
known with sufficient precision to warrant direct 
calculation of macroscopic properties. One must 
instead be satisfield to show (6, 7, 9, 10) that with 
reasonable values of the parameters a proper 
accounting can be made for the temperature 
dependence of Cc and/or x. Any “comparison” 
between theory and experiment then reduces to a 
process of evaluating the disposable parameters, 
from which can be obtained such important 
information as the overall splitting (EC) and other 
details of the CF spectrum, the relative importance 
of different order terms in the perturbing potential, 
etc.-information which is of very considerable 
significance. 

As a result of work extending over the preceding 
three decades adequate information is available 
(2,8, II, 12), to permit the analysis alluded to in the 
previous paragraph to be made for crystals of cubic 
symmetry. There is no correspondingly com- 
prehensive treatment for crystalline systems of 
hexagonal symmetry, although a number of special 
cases have been solved (5, 6, l-1-15’). Most of the 
early work pertained to chlorides and the triethyl 
sulfates in which the second order interaction is 

’ This monograph gives very extensive references to the 
pertinent literature (pp. 352-385). 

important. More recent work from this laboratory 
has been concerned with metallic systems involving 
Pr-elemental Pr and PrAl,. These analyses have 
represented steps toward providing the much needed 
general information for hexagonal systems. The 
present work is an extension to include all other 
J values, but, as will be noted below, is restricted to 
crystals whose axial ratios are ideal. The treatment 
will be extended later to include the effect of an 
applied magnetic field (II in the series) and the 
influence of deviation from the ideal axial ratio 
so that the second-order term becomes important 
(III in the series). 

In Section II very brief descriptions are given of 
the Hamiltonian employed and the mode of calcula- 
tion. Results are presented in Section III together 
with some comments about possible errors which 
arise out of the approximate nature of the Hamilton- 
ian. 

II. General Description of the Calculations 

A. The Hamiltonian 
The most general Hamiltonian for a hexagonal 

crystal field contains four independent parameters. 
Following the notation described by Hutchings 
(16) it can be written 

c7-F = B2* 02* + B4* 0,” + B6* Oh0 + Bh6 Oh6. (3) 

To date very few calculations have been made using 
this complete and complex Hamiltonian. If con- 
sideration is limited to crystals with the ideal axial 
ratio (i.e., c/a = 24213 = 1.63), the second-order 
term vanishes. The Hamiltonian can be further 
simplified by making use of the result B60/B66 = $7 = 
0.1035 obtained if the point charge model applies. 

c7F = B4* 04* + B,O (0: + -z 066). (4) 

Calculations were made using this simplified 
Hamiltonian. Clearly these calculations can be 
regarded as significant only if the simplified 
Hamiltonian can be justified. It is appropriate to 
examine this point in some detail. 

First, consider the axial ratio limitation. Are there 
materials of interest with ideal or nearly ideal 
(viz., B, very small) axial ratios? The answer to this 
question is yes. Elemental Pr (c/a = 1.61) is an 
example; it was recently analyzed (5,lU) on the basis 
of B, = 0 and excellent agreement with experiment 
was achieved. Other hexagonal elements and inter- 
compounds with axial ratios which are ideal or 
nearly so: Ce, 1.62; Nd, 1.612; ErMn2, 1.63; 
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TmMn2, 1.63; DyOs,, 1.61; ErOs2, 1.65, etc. There 
are thus sufficient crystals known to warrant under- 
taking calculations with c/a restricted to the ideal 
values. 

Next, consider the use of the assumed ratio for 
B6’/B6”. Calculations (27) show that this ratio is 
relatively insensitive to the positions of the sur- 
rounding ions so that small deviations in c/a from 
1.63 are insignificant. This ratio is also insensitive to 
the model used in the calculations. The point charge 
model values are not too different from the values 
computed from the more general ionic model (17) 
which takes into account in addition to the point 
charges higher induced moments of the surrounding 
ions. Experiment reveals that this ratio is also 
relatively insensitive to the particular rare-earth ion 
and/or the nature of the substance involved. For 
example, assuming B,0/Bh6 = 0.1035 led (6, 10) to a 
proper analysis of the magnetic and thermal 
properties of Pr and PrAl,. In addition analysis of 
results for nine rare-earth trichlorides, whose 
structures differ markedly from those of Pr and 
PrAl,, leads (18) to a ratio 0.100 and which is more- 
over constant to 3 % over the entire group of rare- 
earth halides. Thus there is experimental support 
for the assumed relationship between B60 and B66. 
Nevertheless the possibility exists that B6’/Bb6 may 
deviate from 0.1035 by 10% or more. To ascertain 
the effect of such variations some of the calculations 
were repeated with the ratio differing from 0.1035 
by IO or 20 %. The inff uence of this variation, which 
was minor, will be discussed more fully in the 
following section. 

B. The Energies, Eigenfunctions, and Magnetic 
Moments 

If the crystal field interaction (,Q is weak com- 
pared to the spin-orbit coupling energy, eigen- 
functions for the crystal field states I’i can be 
expressed as linear combinations of eigenfunctions 
for the free ion associated with various M values, 
IM) = ILSJM): 

Iri> = 5 UiMI”>. (5) 
&f-J 

Given the Hamiltonian, the Operator Equivalent 
method developed by Stevens (19) can be employed 
in a straightforward way to establish the eigenvalues 
and eigenfunctions [i.e., to evaluate numerically 
the ai’s in Eq. (5)]. A thorough discussion of the 
Operator Equivalent method has been given by 
Hutchings (16). Further information regarding 
details of the technique involved in making the 
present calculations may be found elsewhere (20). 

TABLE 1 

NOMENCLATURE USED IN EIGENFUNCTION DESIGNATION 

Terms Appearing in 
Eigenfunction 

(See Eq. 5 in Text) 

1+1/2), ~~Iw~, 1113~ 
1rt3m )N2>, w/2> 
/*5/D, 1*7/Z 
M/2), l+7/2) 
l*W>, 1W2>, /+15/2? 
I5W>, 1+11/D, 11-W) 
1411/2), /111/2), /&13:2j 
)1-W), li’W>, /*lW) 

Dominant Term 
J=2n 

J=2n+l 
jrli2’? 
1 ,r3!2: 

Designation 

f 
g 

h” 
d 

.; 
g 
h 

To facilitate discussion and presentation of data 
the nomenclature presented in Table 1 is adopted. 

C. Magnetic Moments of the Crystal Field States 
To facilitate the calculation of magnetic proper- 

ties, the magnetic moment has been computed for 
each of the crystal field states. Moments parallel 
and perpendicular to the hexagonal axis are denoted 
FL,, and pL, respectively. The magnetic moment ,u 
is given by the fundamental expression 

P = cq WOPl rib (6) 

where p,,,, = gJ. From (6) one obtains for ILL; the 
expression 

p,, = f 

.I 

c 
Mu,2 

M=J 

(7) 

pL vanishes unlessJis nonintegral and ri contains 
terms corresponding to dM = + 1. Under these 
circumstances pcLI may exceed p ,, . In general 

(8) 

and the contributions to t.~~ come from the cross 
terms in ri corresponding to dM = * 1. The matrix 
elements involved in Eq. (8) are given by the 
expressions 

(M)J,IM+ 1)= 1/22/(LM)(JiM+ 1) (9a) 
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and Also for the levels a, f, and g for J= 15/2, which -- 
(MIJ,.( M- 1) = l/Zz/(J+ M)(J- MS 1). (9b) involve the cross terms M = & 11/2 and k 13/2, 

For the special case that .T, = I+ l/2) PA =4/1X24,, + ~~~,,,z~,,,z) (11) 

p1=&+ l/2). (10) 
and 

CL= 4512+P12. 

TABLE 2 

ENERGIES, EIGENFUNCTIONS, AND MAGNETIC MOMENTS 

J = 6 - 2 I’, (singlet) + I’2 (singlet) + r3 (singlet) + 
(Ho+3) r4 (singlet) + 3 r, (doublet) + 3 re6(doubletl 

Ir3j.13'>=~cl-3>*13>1; p=o for rC*f 

x E 
II',>= lo) =0~I-6)+a,10)+0~l6>,0~~2a~ il +21 
;,u=o = 

il.0 
- .3 
- .6 
- A 
- .* 
0.0 
0.2 
0.4 
0.6 
0.3 

% 
o.cw 

- ,034 
- ,086 
- .I@ 
- 2% 
- .w 
- ,388 
- ,205 
- .w 
_ .a5 

lr,Zz13')=& cl-3>-13>3;p=o for x**l 

II e 

2 
~r~)~la>=os~r5)+a,~~~>+a,1i7>,o~>o,Z,o, 
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TABLE 2-continued 

J=l5/2- Jl-, (doublet) +2 &(doublet) +3 r, 

CC+, Er+3 I ( doublet ) 
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TABLE 2-continued 

15 lr,>-lh>=aql~Q>+ail~~)+a~l*-) a 2>a2,a,2 
2 2’5 $5 

x E ” 
3 P a? 

11.0 a,3 LOca o.cco o.om 1.ow 

-0.8 -a% 0.999 -0.037 0,001 0.999 

-0.6 439 0.93 -0.144 0.014 0.990 

-0.4 -62 0.686 0.59 -0.139 0.792 

-0.2 0 0.958 0.171 -0.109 0.979 

0.0 65 O.&al -0.022 -0.273 0.e 

0.P 109 0.955 O.lsY 0.103 0.977 

0.4 169 O.ggl 0.102 0.022 0.995 

0.6 lgo 0.957 0.059 o.a6 0.998 

0.8 e3 0.999 0.027 0.0x I.cco 

J=6--2q Lsinglet)+I’2Lsinglet)+~s(singlet)+I’.’.(singlet) 

(Td+,Tms+) +2rs(doubletl+2rs(doublet) 

lq)=lO)=a,l-6>+a,lO> +as16).a~>2as2 p=O 

x E =o ‘6 

il.0 784 l.om 0.m 
-0.8 -7s 0.725 -a’181 
-0.6 -70 0.924 -o.zlo 
-0.4 -62 a.948 -0.215 
-0.8 -54 0.9% -0.207 
0.0 -46 0.9% -0.193 
02 -20 0.954 -0.189 

0.4 T 0.%9 -0.175 
0.6 33 0.976 -0.153 

0.8 59 0.9% -0.110 

IQ= la>=aslr5>+a,l*l>,a~>as2 

x E P 5 “5 
Fl.0 161 o.l6.( 1.m o.c”x 0.833 4% 
-0.8 -55 0.164 0.999 -0.053 0.83 42 

-0.6 -49 0.142 o.Ysa al57 o&9 19 

4.4 -44 0.019 0.923 -0.38s 0.685 - 0 

-022 -9 0.309 0.124 0.693 0.357 - 1 

0.0 -6 0.055 0.882 0.m 0.612 A9 

0.2 4 o.ce 0.96 0.323 0.129 -64 

0.4 17 O.&as o.sel O.rnl 0.793 -63 

0.6 P 0.154 0.994 o.lu 0.821 -63 

0.s h O.l6$ 0.99 0.w 0.831 44 

x *5 5 p Pz 

Iq)= l~)-a,l~5>-a,lfl>.a~>a~ 

Ir,)=lb>-a21r2>+a.l*4).a,2~a,2 

I E ” LL 4 
al.0 -p.o 0.3, Low 0.m 
-0.8 - 5.0 0.3s 0.996 -a.@4 
-0.6 - 1.0 o.Ny, 0.m ‘).z22 
-0.4 - 1.2 0.149 0.931 -ok9 
9.2 - 8.1 o.oll 0.768 -0.641 
0.0 50.8 0.0.59 0.773 0.63b 

0.2 35.0 o.oeJl 0x67 0.493 
0.4 25.2 0.219 0.*1 0.338 

0.6 1.1 0.297 0.9@2 0.w 
0.8 13.8 0.32-l 0.997 o.oi9 

0.66, 46 

0.660 79 

0.618 64 

WI83 53 

0.2% b9 

0.264 a 

0.w -29 

0.553 41 

0.631 -n 

0.661 -76 

Ir3>‘~13a>~~C(-3)+~3)l;P- 0 for x fff 

p=o for x#+t 
x E 
il i59 
-0.8 -71 
-0.6 -47 
-0.4 -22 
-0.2 3 
0.0 28 
0.2 42 

0.4 56 

0.6 70 
0.8 04 

0.512 

0.653 

0.6,0 

0.676 

0.67g 

0.682 

0.685 

0.60 

0.69 

lr2$z16’)=& C l-6) - 16 )l;p=O far x #iI 
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TABLE 2-continued 

J - 4 - r, (singlet 1 + r, ( singlet 1 + r, 1 singlet 1 

( Pr3+ pm=+ 1 , +2 I; (doublet 1 + I-,( doublet 1 

0 

Ir,> - lb) -“a, IT2>+a 
1 I P L2 4 

b-J= 13’) =,* c/-3)+ (3)11P=o for x #it 

Ir,>*- 13’) -& c l-3) - l3)l; P =o for x #il 

J -+--I;(doublet 1 +2l-‘(do1~blet)+~~ (doublet 1 

(Yb3’) 

Ir,>= la>- I*+> 
” ,, - O.lU Y L - 0.571 P - 0.589 

z I 

353 

Ir,> * lb) - I**) 
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TABLE Z-continued 

J+ l-,(doublet )+ra(doublet)+rg(doublet) 

(Ce3+.Sm3+) 

No “ixth order innuence XI+, X=-I 

Ir,>=lo>=l++> 

u ,, = 0.2 yL -0.6 II = Los2 E=+2 -2 

II’,)= lb)‘k3/2) 

“,, = 0.6 “L =o E=-3 +3 

IQ=lc)=(+5/2) 

II,, =I “, =a E=+ 1 -1 

Explanation of Symbols in Table 
x is a parameter giving the relative importance of the fourth- and sixth-order terms. E is the energy in 

units of the parameter W. (For definitions of x and W see Eq. 13.) uM are the normalized coefficients in the 
eigenfunction IF,> = xk=-, aiM]M). p ,, and pL are magnetic moments (divided by gJ p,J along directions 
parallel and perpendicular to the c axis, respectively. p = 2/p ,, * + pL2. 

The table has been constructed for the group D6 (= 622). Concerning the number of terms and their 
degeneracies this table is also valid for other hexagonal point groups (23). 

The moments given in Eqs. (7), (8), (lo), (1 l), and for .7 = 7/2 and 4, 2520 for J = 9/2, 7560 for J= 6 
(12) and in Table 2 are reduced moments. To obtain and 13860 for J = 15/2 and 8. The parameter 
the moment in Bohr magnetons per ion the reduced 1x1 G 1 gives the relative importance of the fourth 
moment is multiplied by gJ. and sixth degree. 

D. Other Details B, F4 = Wx, BsF6 = W(l - 1x1). (14) 

For calculations the Hamiltonian was used in the The point charge model coefficients B4 and B, are 
form the sums 

se= w 
[ 
++(l- 1x1)2$ Cl 3, B4 = g fi<r 4> c 3 (35 cos4 8, - 30 COS* e, + 3) 

O4 = 040, O6 = OGo + 7 Oh6, RJS F4 = 60 and F6 1260 J - 
(15) 
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(Ho) J =8 Hexoaonal 

,*d 
, I I , I I I I I I I I I I I / 

-10 -06 -06 -04 -0.2 0 0.2 0.4 06 06 10 
X 

FIG. 1. Energy levels and eigenfunctions of an ion, with a 
total angular momentum. J = 8, as a function of the mixing 
parameter x. 

- The eigenfunctions of the level do not depend on x. 
- - - - The eigenfunctions are over 80 % of the eigenfunctions 

indicated at x = & 1. 
- - - The eigenfunctions are less than 80 % of the eigen- 

functions as indicated. 
The energy scale is in units of W. When W > 0 the order of the 
levels is as shown. If W < 0, the order of the levels is inverted. 

and 

x (231 co@ Bj - 315 cos4 Bj + 105 cos* Bj - 5). 
(16) 

In these equations the origin is the center of the 
magnetic ion. Rj is the distance of thejth ion from 
the magnetic ion, and 0, is measured from the z axis, 
taken in this case to be the hexagonal axis. ,6 and y 
are the Stevens (8, 18) multiplicative factors. e* = 
I .67097(4)“K A. 

If the summation is carried out only over the 
twelve nearest and the six next nearest neighboring 
ions, one obtains for the A3 structure (simple cph) 
with ideal axial ratio (IO): 

B4 = -0.51560 fi(r4$’ (17) 

and 

B6 = 0.263467 y(r6;) $1 (18) 

assuming all ions have the same charge Z. The 
lattice constant is denoted by a. 

The matrix of Eq. (5) was established using the 
matrix elements of the equivalent operators 
tabulated by Hutchings (26). Diagonalization was 
effected by methods which have been described in 
detail elsewhere (5,6,20). 

III. Results and Discussion 
Results are summarized in Table 2 and in Figs. 

l-l 5. In the diagrams of the energy levels the nature 
of the eigenfunctions is indicated. For x = i 1 the 
eigenfunctions are written beside the level. When the 
eigenfunctions of the level do not depend on X, a 
solid line follows the level. When the eigenfunctions 
change as a function of X, the line is broken. If the 
eigenfunctions are 80% or more of that which is 
indicated for x = I 1 the dashes are short and dense. 
When the eigenfunctions are less than 80% the 
dashes are long. 

In Figs. l-15, it is noted that the levels for x = 1 
are the inverse of those for x = -1. Thus a level with 
x = -1 with certain eigenfunctions must reach at 
x = 1 a level with identical eigenfunctions. For 
example, in the diagram for .7 = LZZ the level lettered 
“a” whose eigenfunctions for x = -1 are 1~ l/21 
must reach the level whose eigenfunctions are 
I& l/2) at x = 1. In following the levels one keeps 
to the level which contains more than 50% of the 
original eigenfunctions. To keep this principle it is 
necessary to jump from one representation to 
another which has the same symmetry properties. 
In the example for J = 15/2 the level “a” jumps at 
x=-O.03 from E=-141W to E=-84W and 
continues as the level lettered “g” (originally 
)& J$)). At x = 0.06 the level “a” jumps once more, 
from E = -88 W to E = 2 W, and continues as the 
level lettered ‘f” (originally /i 121)). In some cases, 
when a particular representation occurs three times 
(only for J= J$ and 8) in the neighborhood of a 
“jumping point” the three components of the eigen- 
functions are less than 50 “/;; for each component. In 
such a case we follow the largest component. 



356 SEGAL AND WALLACE 

-7 

(Ho) J = 8 Hexogonal 
I I I I 1 I I I , , I,,, 

7 h ? 

,./- 
__-. -.-.-.-.-.- I+61 r, - I.01 I*&.-.-“.,., 

.H’-‘b.. 
0.9 - 

117) 
“\ / 

i / 

I’!/ 

\ \ 
0.8 - 

I *fi> 
0.7 i. 

o.6 1*5)----e-- \! 
--’ 

--w 
. 

p 0.5 - I*+- -4. 
‘.. 

A 

‘\. 

o.4 1+3). 
‘-.-+\l:\. 

/ 
i 

0.3 

t IW- 9 / - 
0.2 

o,, I*,)----L--- 

! 

1’ 

r3 r4 r2 rf 1 

’ -0.4 -0.3 -0.; 
-0.5 0.55 0.7 

FIG. 2. Permanent (parallel) magnetic moments of the levels in Fig. 1. The two eigenfunctions of the doublet levels have 
equal and opposite magnetic moments; in the figure only the positive component is shown. (Notice the nonlinear scale of x.) 

300 - 
-04 

I 

t r,t1 l/2 ‘.., r,t1 l/2 ‘.., 

200 - rsf 912 +.,, ..~ 
"?. 

(Dy, Er) J=l5/2 Hexagonal (Dy, Er) J=l5/2 Hexagonal 

86 B.3 

/*15/Z l-9 
,/” /’ 

,/’ ,/ 
/’ ,/ 

,/’ ,/ 
,/’ 

,,/ ,/ 
,* v2r, 

-2oo- -2oo- 
,,a' ,' /' .I 

I-, *:m/2:I’ 

FIG. 3. Data corresponding to that in Fig. 1 for ion with J= 1542. 
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(Dy, Er) J=l5/2 Hexagonal 

-1.0 - 0.5 0 0.5 1.0 
X 

FIG. 4. Total permanent magnetic moment (p) of the levels of Fig. 3. 

I.C 

0.6 

0.E 

0.d 

Ji 0.2 

a 

-0.2 

- 0.4 

(Dy, Er) J=l5/2 Hexagonal 

1 

_-- ----iI/ r, 

---N, f\ 

-4 
'\ :g 

I 
b 

I I I 01, I I I I, , I , I, I I I, 1 
-1.0 0.5 0 0.5 IO 

x 

FIG. 5’. Permanent parallel (EL ,,) and perpendicular (pJ magnetic moments of the levels of Fig. 3. The two eigenfunctions of 
a doublet level have one perpendicular component and two parallel components. The two parallel components have equal 
and opposite magnetic moments. In the figure only the positive component of the parallel moments is shown. The levels c 
and dhave equal and opposite perpendicular magnetic moments. In the figure only the positive part is shown. 
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(Tb, Td J=6 Hexagonal 

FIG. 6. Data corresponding to that in Fig. 1 for ion with J = 6. 

Consider the eigenfunctions of the level “a” at 
x = 0 which is close to two “jumping points.” In this 
case between the two “jumping points” the eigen- 
functions are la) = 0.653 If y) - 0.509 1% l/2) 
- 0.560 Ii 9). This level is lettered “a”, which 
originally was I* l/2) because the other two levels 
(g,f) of the same symetry (r,) are well defined at 
x = 0, which means that these levels (Jg) at x = 0 
have more than 50 % the If lz$) and I& y) compo- 
nents respectively. If) = 0.769 I& y + 0.612 
[h 3) + 0.182 If y). 18) = 0.735 lilt y) - 0.604 
1,. 4) + 0.307 122 y->. 

This procedure is somewhat complicated but it 
provides useful information about the eigenfunc- 
tions of the level merely by looking at the diagrams. 

Only for precise knowledge or calculations must one 
go to the tables. 

As noted earlier, the calculations are based on the 
assumption that Bh0/Bb6 = 8/77, a ratio which is 
found experimentally within 10 to 20% for a large 
number of rare-earth compounds. Some calculations 
were made with this ratio varying by 10 and 20%. 
The differences (Figs. 16-19) produced are minor; 
the order of levels is unchanged and their spacings 
are only trivially affected. Hence the effect in using 
the approximate Hamiltonian, instead of the exact 
one involving the BbO, Bb6 ratio appropriate to the 
particular compound under investigation, will be to 
obtain slightly different values for the parameters W 
and x when the theoretical results obtained in 
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FIG. 7. Data corresponding to that of Fig. 2 for ion with J = 6. 
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FIG. 8. Data corresponding to that in Fig. 1 for ion with J = 912. 
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FIG. 9. Data corresponding to that in Fig. 4 for ion with J= 912. 
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FIG. 10. Data corresponding to that in Fig. 5 for ion with J = 9/2. 

parametrical form are compared with experiment. very considerable utility in respect to the evaluation 
The W and x parameters will have less intrinsic of the influence of the crystal field interaction on the 
significance than would be the case if the exact bulk magnetic and thermal properties of crystals 
Hamiltonian were employed. Notwithstanding this containing rare-earth ions. Examples of these uses 
limitation the present results would seem to be of are to be found in recent publications from this 
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FIG. 11. Data corresponding to that in Fig. 1 for ion with J = 4. 
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FIG. 12. Data corresponding to that in Fig. 2 for ion with J = 4. 
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FIG. 13. Data corresponding to that in Fig. 1 for ion with J= 7/2. 
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FIG. 14. Data corresponding to that in Fig. 4 for ion with J = 712. 
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FIG. 15. Data corresponding to that in Fig. 5 for ion with J = 712. 

(Nd) J-9/2 Hexagonal 

FIG. 16. Data corresponding to that in Fig. 8, for different Be0/BG6 values. 
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FIG. 17. Data corresponding to that in Fig. 9, for different BbO/BbO values. 
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FIG. 18. Data corresponding to that in Fig. 11 for different B6’/B6’ values. 
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FIG. 19. Data corresponding to that in Fig. 12 for different B60/B,,’ values. 

Laboratory dealing with the susceptibilities and heat 
capacity behavior of intermetallic compounds 
containing rare-earth elements (d-6,9,21,22). 
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